Ela Characterization of P -property for Some Z-transformations on Positive Semidefinite Cone
نویسنده
چکیده
The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)
منابع مشابه
Characterization of P-Property for some Z-Transformations on positive semidefinite cone
The P -property of the following two Z-transformations with respect to the positive semidefinite cone is characterized: (i) I − S, where S : S → S is a nilpotent linear transformation, (ii) I − L A , where LA is the Lyapunov transformation defined on S n×n by LA(X) = AX + XA . (Here S denotes the space of all symmetric n×n matrices and I is the identity transformation.)
متن کاملRank-one solutions for homogeneous linear matrix equations over the positive semidefinite cone
The problem of finding a rank-one solution to a system of linear matrix equations arises from many practical applications. Given a system of linear matrix equations, however, such a low-rank solution does not always exist. In this paper, we aim at developing some sufficient conditions for the existence of a rank-one solution to the system of homogeneous linear matrix equations (HLME) over the p...
متن کاملSome P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras
A real square matrix is said to be a P-matrix if all its principal minors are positive. It is well known that this property is equivalent to: the nonsign-reversal property based on the componentwise product of vectors, the order P-property based on the minimum and maximum of vectors, uniqueness property in the standard linear complementarity problem, (Lipschitzian) homeomorphism property of the...
متن کاملZ-transformations on proper and symmetric cones Z-transformations
Motivated by the similarities between the properties of Z-matrices on Rn + and Lyapunov and Stein transformations on the semidefinite cone S+, we introduce and study Z-transformations on proper cones. We show that many properties of Z-matrices extend to Z-transformations. We describe the diagonal stability of such a transformation on a symmetric cone by means of quadratic representations. Final...
متن کاملEla Semidefinite Geometry of the Numerical Range
Abstract. The numerical range of a matrix is studied geometrically via the cone of positive semidefinite matrices (or semidefinite cone for short). In particular, it is shown that the feasible set of a two-dimensional linear matrix inequality (LMI), an affine section of the semidefinite cone, is always dual to the numerical range of a matrix, which is therefore an affine projection of the semid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011